
2020-09-25

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2020 by the above. Some rights reserved.

Debugging

2
Logging execution

Outline

• This is the fifth in a sequence of six topics on

– C assertions

– Code development strategies

– Testing

– Commenting your code

– Using print statements for debugging

– Using the debugger

3
Logging execution

Outline

• In this topic, we will:

– Describe the purpose of the debugger

– Look at how it is used

– Explain some of the benefits

4
Logging execution

Purpose of debugging

• Logging can be frustrating,

 as you must insert statements throughout your code

• The debugger does all this work for you:

– It prepares a different executable: one that tracks all variables

– We’ll try this on a program that works

• The term debugger tends to scare students

– We will start by showing how it works with correct code

2020-09-25

2

5
Logging execution

Logging with high-low

• Here is a program that calculates the gcd of two integers:
#include <iostream>

// Function declarations

int main();

int gcd(int m, int n);

// Function definitions

int main() {

 int m{8*3 *7*11*13 *23};

 int n{4*9*5 *11 *17*23};

 // The gcd should be 4x3x11x23 = 3036

 std::cout << gcd(m, n) << std::endl;

 return 0;

}

int gcd(int m, int n) {
 if (m == 0) {
 return n;
 } else if (n == 0) {
 return m;
 }

 while (n != 0) {
 int r{ m%n };
 m = n;
 n = r;
 }

 return m;
}

6
Logging execution

Logging with high-low

• In Eclipse (or whichever IDE you are using),

 you can execute this code in debug mode

• Why “bugs”?

– The term was used to describe technical issues since the mid 1800s

– On September 9th, 1947, operators found an actual bug (a moth) in a
computer, and labeled it as “first actual case of bug being found”

– RAdm. Grace Hopper popularized the use of “bugs” and “debugging”
in computer hardware and software development

7
Logging execution

Logging with high-low

• When you debug your program, you are asked:

– Please do switch

8
Logging execution

Logging with high-low

• For C/C++ development, Eclipse offers two primary perspectives:

– C/C++

– Debug

2020-09-25

3

9
Logging execution

Starting the debugger

All local variables and parameters,
their types, and their values of the
currently executing function

The statement to be executed next.

10
Logging execution

Relevant controls

Stop debugging

Stepping controls

11
Logging execution

Logging with high-low

Step Return
Step Into

Step Over

12
Logging execution

Step Into

• The Step Into (F5)

– Executes the next statement,

 unless there is one or more function calls

– If there is one or more function calls in the next statement,

 step into executing the next function call

• Note, it will not step into any function call in the standard library,

 only your functions you authored in Eclipse

2020-09-25

4

13
Logging execution

Step Over

• The Step Over (F6)

– Executes the next statement

– All function calls are made, but you simply see the result

– If there are no function calls, Step Over is equivalent to Step Into

14
Logging execution

Step Return

• The Step Return (F6)

– Finishes executing the current function and returns to the statement
that contains the call to this function

– Thus button is inactive when in main()

15
Logging execution

Stepping through code

• The Resume button continues execution until either:

– The program finishes

– A breakpoint is reached

 …and a few other features

16
Logging execution

Stepping through code

2020-09-25

5

17
Logging execution

Stepping through code

18
Logging execution

Stepping through code

19
Logging execution

Stepping through code

20
Logging execution

Stepping through code

2020-09-25

6

21
Logging execution

Stepping through code

22
Logging execution

Stepping through code

23
Logging execution

Stepping through code

24
Logging execution

Stepping through code

2020-09-25

7

25
Logging execution

Breakpoints

• At this point, you may have noticed a small weakness

– Suppose you have a very large program

• Do you really want to step through every statement until you get to
the statements where you believe the code may be buggy?

– The solution to this are breakpoints

26
Logging execution

Breakpoints

27
Logging execution

Starting the debugger

28
Logging execution

Summary

• Following this lesson, you now:

– Have been introduced to the debugger

– Understand all it does is display the values of parameters and local
variables

• It allows you to execute one statement at a time

– Know you can Step Into the execution of functions, or

 Step Over the execution of functions and just see the results

– Are aware that you can even change the value of parameters and
local variables on-the-fly while the debugger is executing

– Know you can set break points that allow you to execute the
program until the line in question is reached

2020-09-25

8

29
Logging execution

References

[1] Wikipedia:

 https://en.wikipedia.org/wiki/Debugger

30
Logging execution

Acknowledgments

None so far.

31
Logging execution

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

32
Logging execution

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

